COCO-Text: Dataset and Benchmark for Text Detection and Recognition in Natural Images
نویسندگان
چکیده
This paper describes the COCO-Text dataset. In recent years large-scale datasets like SUN and Imagenet drove the advancement of scene understanding and object recognition. The goal of COCO-Text is to advance state-of-the-art in text detection and recognition in natural images. The dataset is based on the MS COCO dataset, which contains images of complex everyday scenes. The images were not collected with text in mind and thus contain a broad variety of text instances. To reflect the diversity of text in natural scenes, we annotate text with (a) location in terms of a bounding box, (b) fine-grained classification into machine printed text and handwritten text, (c) classification into legible and illegible text, (d) script of the text and (e) transcriptions of legible text. The dataset contains over 173k text annotations in over 63k images. We provide a statistical analysis of the accuracy of our annotations. In addition, we present an analysis of three leading state-of-the-art photo Optical Character Recognition (OCR) approaches on our dataset. While scene text detection and recognition enjoys strong advances in recent years, we identify significant shortcomings motivating future work.
منابع مشابه
Rotation-Sensitive Regression for Oriented Scene Text Detection
Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for bo...
متن کاملAn Image Dataset of Text Patches in Everyday Scenes
This paper describes a dataset containing small images of text from everyday scenes. The purpose of the dataset is to support the development of new automated systems that can detect and analyze text. Although much research has been devoted to text detection and recognition in scanned documents, relatively little attention has been given to text detection in other types of images, such as photo...
متن کاملDocument Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)
Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...
متن کاملNatural scene text localization using edge color signature
Localizing text regions in images taken from natural scenes is one of the challenging problems dueto variations in font, size, color and orientation of text. In this paper, we introduce a new concept socalled Edge Color Signature for localizing text regions in an image. This method is able to localizeboth Farsi and English texts. In the proposed method rst a pyramid using diff...
متن کاملScene Text Detection via Holistic, Multi-Channel Prediction
Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.07140 شماره
صفحات -
تاریخ انتشار 2016